ADJACENT VERTEX DISTINGUISHING TOTAL COLORING OF GRAPHS WITH LOWER AVERAGE DEGREE

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjacent Vertex Distinguishing Total Coloring of Graphs with Lower Average Degree

An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing total coloring of G is denoted by χ′′ a(G). Let mad(G) and ∆(G) denote the maximum average degree and the maximum degree of a graph G, respectivel...

متن کامل

Adjacent vertex-distinguishing edge coloring of graphs

An adjacent vertex-distinguishing edge coloring, or avd-coloring, of a graph G is a proper edge coloring of G such that no pair of adjacent vertices meets the same set of colors. Let mad(G) and ∆(G) denote the maximum average degree and the maximum degree of a graph G, respectively. In this paper, we prove that every graph G with ∆(G) ≥ 5 and mad(G) < 3− 2 ∆ can be avd-colored with ∆(G) + 1 col...

متن کامل

adjacent vertex distinguishing acyclic edge coloring of the cartesian product of graphs

‎let $g$ be a graph and $chi^{prime}_{aa}(g)$ denotes the minimum number of colors required for an‎ ‎acyclic edge coloring of $g$ in which no two adjacent vertices are incident to edges colored with the same set of colors‎. ‎we prove a general bound for $chi^{prime}_{aa}(gsquare h)$ for any two graphs $g$ and $h$‎. ‎we also determine‎ ‎exact value of this parameter for the cartesian product of ...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2008

ISSN: 1027-5487

DOI: 10.11650/twjm/1500404991